Functional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization
نویسندگان
چکیده
Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multimodal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts’ requirements, and flexibly accommodates their changing goals.
منابع مشابه
Multi-objective Optimization of web profile of railway wheel using Bi-directional Evolutionary Structural Optimization
In this paper, multi-objective optimization of railway wheel web profile using bidirectional evolutionary structural optimization (BESO) algorithm is investigated. Using a finite element software, static analysis of the wheel based on a standard load case, and its modal analysis for finding the fundamental natural frequency is performed. The von Mises stress and critical frequency as the proble...
متن کاملA Multi-Objective Multi-Modal Optimization Approach for Mining Stable Spatio-Temporal Patterns
This paper, motivated by functional brain imaging applications, is interested in the discovery of stable spatio-temporal patterns. This problem is formalized as a multi-objective multi-modal optimization problem: on one hand, the target patterns must show a good stability in a wide spatio-temporal region (antagonistic objectives); on the other hand, experts are interested in finding all such pa...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملAn Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کامل